最近中文字幕,真人做受120分钟免费看,夜夜爽夜夜叫夜夜高潮,中文无码日韩欧,在办公室被c到呻吟的动态图

  • 1
  • 2
  • 河北工程大學(xué)
河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院
當(dāng)前位置: 研招在線 > 備考 > 考研數(shù)學(xué) >

2020考研數(shù)學(xué):兩角和差公式總結(jié)篇

2020考研數(shù)學(xué):兩角和差公式總結(jié)篇

研招在線免費(fèi)為您提供全國(guó)各大高校研究生報(bào)考、MBA招生、復(fù)試、調(diào)劑、招聘等信息!

研究生招生簡(jiǎn)章,點(diǎn)擊進(jìn)入研究生招生簡(jiǎn)章>>           MBA招生信息,點(diǎn)擊進(jìn)入MBA招生>>

研究生考研備考,點(diǎn)擊進(jìn)入研究生考研備考>>           研究生考研復(fù)試,點(diǎn)擊進(jìn)入考研復(fù)試>>

研究生考研調(diào)劑信息,點(diǎn)擊進(jìn)入考研調(diào)劑>>             研究生考研院校信息庫(kù),點(diǎn)擊進(jìn)入院校信息庫(kù)>>


 

 兩角和差公式:

  1、兩角和與差的三角函數(shù)公式:

  sin(&alpha+&beta)=sin&alphacos&beta+cos&alphasin&beta

  sin(&alpha-&beta)=sin&alphacos&beta-cos&alphasin&beta

  cos(&alpha+&beta)=cos&alphacos&beta-sin&alphasin&beta

  cos(&alpha-&beta)=cos&alphacos&beta+sin&alphasin&beta

  tan(&alpha+&beta)=(tan&alpha+tan&beta)/(1-tan&alphatan&beta)

  tan(&alpha-&beta)=(tan&alpha-tan&beta)/(1+tan&alpha·tan&beta)

  2、二倍角公式:

  二倍角的正弦、余弦和正切公式(升冪縮角公式)

  sin2&alpha=2sin&alphacos&alpha

  cos2&alpha=cos^2(&alpha)-sin^2(&alpha)=2cos^2(&alpha)-1=1-2sin^2(&alpha)

  tan2&alpha=2tan&alpha/[1-tan^2(&alpha)]

  3、半角公式:

  半角的正弦、余弦和正切公式(降冪擴(kuò)角公式)

  sin^2(&alpha/2)=(1-cos&alpha)/2

  cos^2(&alpha/2)=(1+cos&alpha)/2

  tan^2(&alpha/2)=(1-cos&alpha)/(1+cos&alpha)

  另也有tan(&alpha/2)=(1-cos&alpha)/sin&alpha=sin&alpha/(1+cos&alpha)

  4、萬(wàn)能公式:

  sin&alpha=2tan(&alpha/2)/[1+tan^2(&alpha/2)]

  cos&alpha=[1-tan^2(&alpha/2)]/[1+tan^2(&alpha/2)]

  tan&alpha=2tan(&alpha/2)/[1-tan^2(&alpha/2)]

  萬(wàn)能公式推導(dǎo):

  附推導(dǎo): sin2&alpha=2sin&alphacos&alpha=2sin&alphacos&alpha/(cos^2(&alpha)+sin^2(&alpha))......

  (因?yàn)閏os^2(&alpha)+sin^2(&alpha)=1)

  再把分式上下同除cos^2(&alpha),可得sin2&alpha=2tan&alpha/(1+tan^2(&alpha))

  然后用&alpha/2代替&alpha即可。

  同理可推導(dǎo)余弦的萬(wàn)能公式。正切的萬(wàn)能公式可過(guò)正弦比余弦得到。

  5、三倍角公式:

  三倍角的正弦、余弦和正切公式:

  sin3&alpha=3sin&alpha-4sin^3(&alpha)

  cos3&alpha=4cos^3(&alpha)-3cos&alpha

  tan3&alpha=[3tan&alpha-tan^3(&alpha)]/[1-3tan^2(&alpha)]

  三倍角公式推導(dǎo):

  附推導(dǎo):

  tan3&alpha=sin3&alpha/cos3&alpha

  =(sin2&alphacos&alpha+cos2&alphasin&alpha)/(cos2&alphacos&alpha-sin2&alphasin&alpha)

  =(2sin&alphacos^2(&alpha)+cos^2(&alpha)sin&alpha-sin^3(&alpha))/(cos^3(&alpha)-cos&alphasin^2(&alpha)-2sin^2(&alpha)cos&alpha)

  上下同除以cos^3(&alpha),得:

  tan3&alpha=(3tan&alpha-tan^3(&alpha))/(1-3tan^2(&alpha))

  sin3&alpha=sin(2&alpha+&alpha)=sin2&alphacos&alpha+cos2&alphasin&alpha

  =2sin&alphacos^2(&alpha)+(1-2sin^2(&alpha))sin&alpha

  =2sin&alpha-2sin^3(&alpha)+sin&alpha-2sin^3(&alpha)

  =3sin&alpha-4sin^3(&alpha)

  cos3&alpha=cos(2&alpha+&alpha)=cos2&alphacos&alpha-sin2&alphasin&alpha

  =(2cos^2(&alpha)-1)cos&alpha-2cos&alphasin^2(&alpha)

  =2cos^3(&alpha)-cos&alpha+(2cos&alpha-2cos^3(&alpha))

  =4cos^3(&alpha)-3cos&alpha

  即

  sin3&alpha=3sin&alpha-4sin^3(&alpha)

  cos3&alpha=4cos^3(&alpha)-3cos&alpha

  三倍角公式聯(lián)想記憶:

  記憶方法:諧音、聯(lián)想

  正弦三倍角:3元減4元3角(欠債了(被減成負(fù)數(shù)),所以要“掙錢”(音似“正弦”))

  余弦三倍角:4元3角減3元(減完之后還有“余”)

  Ps:注意函數(shù)名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

  另外的記憶方法:

  正弦三倍角:山無(wú)司令(諧音為三無(wú)四立)三指的是"3倍"sin&alpha,無(wú)指的是減號(hào),四指的是"4倍",立指的是sin&alpha立方

  余弦三倍角:司令無(wú)山與上同理

  6、和差化積公式

  三角函數(shù)的和差化積公式

  sin&alpha+sin&beta=2sin[(&alpha+&beta)/2]·cos[(&alpha-&beta)/2]

  sin&alpha-sin&beta=2cos[(&alpha+&beta)/2]·sin[(&alpha-&beta)/2]

  cos&alpha+cos&beta=2cos[(&alpha+&beta)/2]·cos[(&alpha-&beta)/2]

  cos&alpha-cos&beta=-2sin[(&alpha+&beta)/2]·sin[(&alpha-&beta)/2]

  三角函數(shù)的積化和差公式:

  sin&alpha·cos&beta=0.5[sin(&alpha+&beta)+sin(&alpha-&beta)]

  cos&alpha·sin&beta=0.5[sin(&alpha+&beta)-sin(&alpha-&beta)]

  cos&alpha·cos&beta=0.5[cos(&alpha+&beta)+cos(&alpha-&beta)]

  sin&alpha·sin&beta=-0.5[cos(&alpha+&beta)-cos(&alpha-&beta)]

  和差化積公式推導(dǎo):

  附推導(dǎo):

  首先,我們知道sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb

  我們把兩式相加就得到sin(a+b)+sin(a-b)=2sinacosb

  所以,sinacosb=(sin(a+b)+sin(a-b))/2

  同理,若把兩式相減,就得到cosasinb=(sin(a+b)-sin(a-b))/2

  同樣的,我們還知道cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb

  所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosacosb

  所以我們就得到,cosacosb=(cos(a+b)+cos(a-b))/2

  同理,兩式相減我們就得到sinasinb=-(cos(a+b)-cos(a-b))/2

  這樣,我們就得到了積化和差的四個(gè)公式:

  sinacosb=(sin(a+b)+sin(a-b))/2

  cosasinb=(sin(a+b)-sin(a-b))/2

  cosacosb=(cos(a+b)+cos(a-b))/2

  sinasinb=-(cos(a+b)-cos(a-b))/2

  有了積化和差的四個(gè)公式以后,我們只需一個(gè)變形,就可以得到和差化積的四個(gè)公式。

  我們把上述四個(gè)公式中的a+b設(shè)為x,a-b設(shè)為y,那么a=(x+y)/2,b=(x-y)/2

  把a(bǔ),b分別用x,y表示就可以得到和差化積的四個(gè)公式:

  sinx+siny=2sin((x+y)/2)cos((x-y)/2)

  sinx-siny=2cos((x+y)/2)sin((x-y)/2)

  cosx+cosy=2cos((x+y)/2)cos((x-y)/2) 

  cosx-cosy=-2sin((x+y)/2)sin((x-y)/2)

來(lái)源:http://www.xuefu.com/article/6802.html